Two ent-Kaurane Diterpenoids from Rubus corchorifolius L. f.

by Min Zhang a) b) 1), Yang-Wen Ou c) d) 1), Xue-Xiang Chen d), Yong Cao * d), Yong Kuang d), Zhu-Qing Gong e), Sheng Peng e), and Yun-Jiao Chen d)

- ^a) College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha 410128, P. R. China
- b) College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- c) Pharmacy College, Hunan University of Traditional Chinese Medicine, Changsha 410007, P. R. China d) College of Food Science, South China of Agricultural University, Guangzhou 510642, P. R. China (phone/fax: +86-20-85286234; e-mail: caoyong2181@scau.edu.cn)
 - ^e) Key Laboratory of Forest Engineering and Chemistry, Ji-Shou University, Zhangjiajie 427000, P. R. China

A further chemical investigation of the plant *Rubus corchorifolius* L. f., collected in Hunan Province, afforded two new *ent*-kauranoids 6 and 7. Their structures were elucidated by various spectroscopic methods.

Introduction. – *Rubus corchorifolius* L. f., also known as raspberry, milk bubble, March bubble, *etc.*, is an upright shrub of genus *Rubus* L. It is distributed in the whole country of China, except for the Northeast, Tibet, Gansu, Qinghai, and Xinjiang Provinces [1][2]. It has been used as a Chinese folk medicine to treat diarrhea, extravasated blood, and alcoholism [3]. Recently, as part of a study on the biologically active constituents of this plant collected in Hunan Province, we have reported five new *ent*-kaurane diterpenoids, *i.e.*, (16α) -16,17-dihydroxy-*ent*-kauran-2-one 17-O- β -D-glucopyranoside (1), $(3\alpha,4\alpha,16\alpha)$ -*ent*-kauran-3,16,17,18-tetraol (2), $(4\alpha,16\alpha)$ -16,17,18-trihydroxy-*ent*-kauran-2-one (3), $(2\beta,3\alpha,16\alpha)$ -*ent*-kauran-2,3,16,17-tetraol (4), $(9\beta,16\alpha)$ -9,16,17-trihydroxy-*ent*-kauran-2-one (5) (*Fig. 1*) [4][5]. Further investigation on this plant resulted in the isolation of two new *ent*-kaurane diterpenoids (*Fig. 2*). The isolation and structure elucidation of these two compounds are reported in this article.

Fig. 1. The ent-kaurane diterpenoids 1-5 isolated from Rubus corchorifolius L. f. [4-5]

¹⁾ These authors contributed equally to this work.

ACO
$$\frac{1}{18}$$
 $\frac{10}{19}$ \frac

Results and Discussion. – Compound 6, obtained as colorless needle-like crystals and with quasi-molecular-ion peaks at m/z 381 ($[M+H]^+$), 363 ($[M+H-H_2O]^+$), and 345 ($[M+H-2H_2O]^+$) in the atmospheric-pressure chemical-ionization (AP-CI) MS, was deduced to have a molecular mass of 380 amu. The ¹H-NMR spectrum (*Table*) indicated the presence of one O-bearing CH group ($\delta(H)$ 3.61 (dd, J=3.0, 2.4 Hz)), two O-bearing CH₂ groups (δ (H) 3.59, 3.69 (2d, J = 11.4, each 1 H); and 3.93, 4.22 (2d, J = 10.8, each 1 H)), one Ac group (δ (H) 2.03 (s, 3 H)), two singlet Me groups (δ (H) 1.02 and 1.07). In the ¹³C-NMR (DEPT) spectrum (*Table*), signals of one C=O group, four quaternary C-atoms, including an O-bearing one, four CH groups, including one O-bearing saturated C-atom, ten CH₂ groups, including two O-bearing ones, and three Me groups were observed. The above spectral evidence revealed the molecular formula $C_{2}H_{36}O_{5}$; moreover, the ¹³C-NMR spectrum was similar to that of compound 2 (*Table*) which had been isolated from the same plant before. Therefore, compound 6 was determined as an ent-kaurane-type diterpenoid [5-7]. The ¹H- and ¹³C-NMR signals were assigned based on the 1H,1H-COSY, HSQC, HMBC, and NOESY experiments. In the HMBC spectrum, the following long-range correlations were observed (Fig. 3): $CH_2(17)/C(13)$, C(15), and C(16); $CH_2(18)/C(3)$, C(4), C(5), C(19), and C(Ac C=O); Me(20)/C(1), C(5), C(9), and C(10). The NOESY plot revealed the NOEs $CH_2(18)/C(10)$ Me(20), $CH_2(18)/Me(19)$, $CH_2(18)/H_a$ –C(3), H_β – $C(5)/H_\beta$ –C(9), H_β –C(5)/Me(19), as well as H–C(15)/H_{β}–C(9), H_{α}–C(14)/ Me(20) (Fig. 4). These findings indicated that the AcO group should be at C(18) and three OH groups at C(3) (in β position), C(16) (in α position), and C(17), respectively. Thus, the structure of compound 6 was determined as $(3\beta,5\beta,8\alpha,9\beta,10\alpha,16\beta)$ -3,16,17-trihydroxykauran-18-yl acetate as shown in Fig. 2.

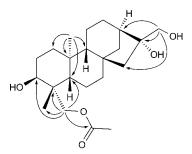


Fig. 3. Key HMBC correlations of compound 6

Compound 7, obtained as a white powder and with *quasi*-molecular-ion peaks at m/z 560 ($[M + H_2O]^+$), 565 ($[M + Na]^+$), and 1107 ($[2 M + Na]^+$) in the APCI-MS,

Table. NMR Data of Compounds 6 and 7, and the Known Compound 2. δ in ppm, J in Hz.

	6 ^a)		7 a)b)c)		2 ^d)
	$\delta(C)$	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
CH ₂ (1)	34.4 (t)	1.26-1.32 (m),	34.4 (t)	1.24-1.34 (m),	38.4 (t)
		$1.53 - 1.58 \ (m)$		1.50-1.59 (m)	
CH ₂ (2)	26.3(t)	1.52-1.58 (m),	26.3(t)	1.52-1.59 (m),	26.0(t)
		$1.91 - 1.99 \ (m)$		1.90-2.00 (m)	
H-C(3)	71.4(d)	3.61 (dd, J = 3.0, 2.4)	71.4(d)	3.61 (br. s)	68.6 (d)
C(4)	42.7(s)		42.7(s)		42.9 (s)
H-C(5)	50.4 (d)	$1.42 - 1.47 \ (m)$	50.4 (d)	$1.41 - 1.48 \ (m)$	48.9 (d)
$CH_2(6)$	21.3(t)	1.37 - 1.45 (m),	21.3(t)	1.33-1.47 (m),	20.2(t)
		$1.50-1.61 \ (m)$		$1.49 - 1.61 \ (m)$	
CH ₂ (7)	43.4(t)	1.48-1.55 (m),	43.3 (t)	1.48 - 1.57 (m),	42.6(t)
		1.60-1.66 (m)		$1.58 - 1.66 \ (m)$	
C(8)	45.7(s)		45.7(s)		44.3 (s)
H-C(9)	58.0(d)	$1.11 - 1.16 \ (m)$	58.0 (d)	1.13 (br. s)	56.6 (d)
C(10)	40.1~(s)		40.1~(s)		39.1 (s)
$CH_2(11)$	19.3(t)	1.54-1.61 (m),	19.3(t)	1.50-1.65 (m)	18.2(t)
		1.61-1.67 (m)			
CH ₂ (12)	27.2(t)	1.52-1.59 (m),	27.1(t)	1.46 - 1.62 (m),	25.4(t)
		1.60-1.66 (m)		1.69 - 1.77 (m)	
H-C(13)	46.4(d)	2.00-2.05 (m)	46.8(d)	2.08 (br. s)	44.9(d)
$CH_2(14)$	38.0(t)	1.58-1.64 (m),	37.9(t)	1.55-1.63 (m),	36.9 (t)
		1.88 - 1.95 (m)		1.88 - 1.94 (m)	
CH ₂ (15)	53.9 (t)	1.36-1.42 (m),	53.6 (t)	1.36-1.43 (m),	53.0 (t)
		$1.51 - 1.57 \ (m)$		1.50-1.57 (m)	
C(16)	82.8(s)		82.0(s)		80.7(s)
$CH_2(17)$	66.8(t)	3.59 (d, J = 11.4),	75.0(t)	3.51 (d, J = 10.4),	65.4 (t)
		3.69 (d, J = 11.4)		4.19 (d, J = 10.8)	
$CH_2(18)$	68.9(t)	3.93 (d, J = 11.4),	68.9(t)	3.93 (d, J = 11.2),	64.1 (t)
		4.22 (d, J = 10.8)		4.22 (d, J = 11.6)	
Me(19)	23.1(q)	1.02 (s)	23.1(q)	1.02 (s)	23.0(q)
Me(20)	18.5 (q)	1.07(s)	18.5 (q)	1.07 (s)	18.1 (q)
AcO	173.1(s),	2.03(s)	173.1 (s),		
	20.7(q)		20.8(q)	2.03(s)	

^{a)} Recorded in CD₃OD. ^{b)} ¹³C-NMR of Glc: 105.3 (d, C(1)); 75.3 (d, C(2)); 78.0 (d, C(3)); 71.7 (d, C(4)); 77.9 (d, C(5)); 62.8 (t, C(6)). ^{c)} ¹H-NMR of Glc: 4.29 (d, J=7.6, H-C(1)); 3.22 (dd, J=7.6, 9.4, H-C(2)); 3.25 – 3.30 (m, H-C(3)); 3.26 – 3.30 (m, H-C(4)); 3.34 – 3.40 (m, H-C(5)); 3.64 – 3.69 (m, 1, H-C(5)); 3.87(dd, J=1.2, 12.0, 1, H-C(6)). ^{d)} Recorded in (D_6) DMSO.

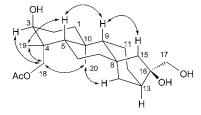


Fig. 4. Key NOEs of compound 6

was deduced to have a molecular mass of 542 amu. The 13 C-NMR (DEPT) spectrum (Table) exhibited signals of five quaternary C-atoms, including one C=O group, one Obearing saturated C-atom, nine CH groups, including six O-bearing ones, eleven CH₂ groups, including three O-bearing ones, and three Me groups. Comparing the 13 C-NMR data of compound **7** with those of compound **6**, it was evident that compound **6** was the genin of compound **7**; moreover, chemical shifts at δ (H) 4.29 (d, J = 7.6, 1 H Glc-1) and δ (C) 75.0 (C(17), because of glycosidation shift) revealed that compound **7** was the 17-O- β -D-glucopyranoside of **6**. Thus, the structure of compound **7** was established as (3β , 5β , 8α , 9β , 10α , 13α)-17-[(β -D-glucopyranosyl)oxy]-3,16-dihydroxykauran-18-yl acetate as shown in Fig. 2.

Experimental Part

General. Column chromatography (CC): silica gel H (SiO₂; 200–300 mesh; Qingdao Haiyang Chemical Co., Ltd.). TLC: Normal-phase SiO₂ GF_{254} plates; visualization under UV light (at 254 and 365 nm) and spraying with 0.5% vanillin/H₂SO₄, followed by heating at 110° for 5–10 min. M.p.: X-4 numeral melting-point instrument (Beijing Tech Instrument Co., Ltd.); uncorrected. Optical rotations: WZZ-2B polarimeter (cell length, 1.0 dm; Shanghai Precision Instruments Co., Ltd.). UV Spectra: Hitachi-UV-3010 UV/VIS spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: Bruker-Vector-33 spectrometer (KBr discs); \bar{v} in cm⁻¹. NMR (CD₃OD): Bruker-ARX-600 spectrometer, at 600 (¹H) and 150 MHz (¹³C) for 6; Bruker-ARX-400 spectrometer, at 400 (¹H) and 100 MHz (¹³C) for 7; residual solvent peaks as internal standard; δ in ppm and J in Hz; multiplicities of ¹³C by DEPT. AP-CI-MS: LCQ-DECA-XP liquid chromatography/mass spectrometer (Thermo Finnigan, vaporizer temp. 450°, mobile phase MeCN/H₂O 1:1); in m/z (rel. %).

Plant Material. The leaves of Rubus corchorifolius L. f. were collected in July 2008 in Zhangjiajie, Hunan Province, P. R. China, and identified by Prof. Bo-Ru Liao. A voucher specimen (No. 2008-01) was deposited with the Key Laboratory of Forest Products and Chemical Engineering at Ji-Shou University, Zhangjiajie, P. R. China.

Extraction and Isolation. The air-dried leaves of Rubus corchorifolius L. f. (3.0 kg) were crushed and extracted (2×35 l) with 80% EtOH at 50° for 48 h. The EtOH extracts were concentrated under vacuum below 55° to give 1.5 l of a liquid residue, which was extracted successively with petroleum ether (b.p. $60-90^\circ$; 6×1.5 l; 31 g), CHCl₃ (6×1.5 l; 55 g), AcOEt (10×1.5 l; 40 g), and BuOH (6×1.5 l; 64 g). The CHCl₃ extract (30 g) was subjected to CC (SiO₂ H, 8×100 cm; CHCl₃/MeOH and MeOH/H₂O of increasing polarity): Frs. 1-11. Compound 6 (86 mg) was obtained by repeated recrystallization of Fr. 7 from MeOH. Fr. 11 (3.1 g) was then subjected to CC (SiO₂ H, 3×40 cm, CHCl₃/MeOH of increasing polarity): Frs. 11.1-11.15. Fr. 11.15 yielded 7 (143 mg) by recrystallization from MeOH.

 $(3\beta,5\beta,8\alpha,9\beta,10\alpha,16\beta)$ -3,16,17-Trihydroxykauran-18-yl Acetate (6). Colorless needle-like crystals. M.p. $140-141^{\circ}$. [α] $_{2}^{24}=-17.3$ (c=0.0015, MeOH). UV (MeOH): 207 (2.28). IR: 3505, 3430 (OH), 2940, 2850 (C – H), 1715 (C=O). NMR: *Table*. AP-CI-MS: 267, 285, 345 (100), 363, 381.

 $(3\beta,5\beta,8\alpha,9\beta,10\alpha,13\alpha)$ -17- $(\beta$ -D-Glucopyranosyloxy)-3,16-dihydroxykauran-18-yl Acetate (**7**). White powder. M.p. $139-141^{\circ}$. [α]_D²⁴ = -25.8 (c=0.0012, MeOH). UV (MeOH): 205 (1.76), 314 (1.18). IR: 3515, 3480 (OH), 2940, 2860 (C – H), 1730 (C=O). NMR: *Table*. AP-CI-MS: 345, 502, 560 (100), 565, 641, 1049, 1107, 1183.

REFERENCES

- [1] Institute of Botany, 'Higher Plants Illustrated Handbook of China', Chinese Science and Technology Press, Beijing, 1985, pp. 210-218.
- [2] Institute of Botany, 'Higher Plants Illustrated Handbook of China', Chinese Science and Technology Press, Beijing, 1985, p. 291.

- [3] S. Q. Wang, W. Q. Pan, Z. Y. Zhang, Chin. J. Nat. Med. 2002, 54, 42.
- [4] M. Zhang, Y. Cao, F.-L. Du, W. Ou-Yang, Y. Yuan, Acta Pharm. Sin. 2007, 42, 1155.
- [5] X.-X. Chen, S.-D. Zhou, Y.-W. Ou, S.-Y. Xiao, W.-H. Lin, Y. Cao, M. Zhang, L.-C. Zhao, L.-F. Li, Helv. Chim. Acta 2010, 93, 84.
- [6] J.-Z. Wu, C. Morizane, A. Iida, S.-i. Ueda, Z.-L. Zhou, M. Xu, M. Zhang, R.-M. Li, T. Fujita, Chem. Pharm. Bull. 1995, 43, 1448.
- [7] G. Liu, R. Müller, P. Rüedi, *Helv. Chim. Acta* 2003, 86, 420.

Received February 28, 2011